
Asyncio

Martin Natano, Ivana Kellyerova

May 4, 2019

What is asyncio?

What is asyncio?

Coroutines

import asyncio

async def alice():

print(’Hi!’)

print(’My name is Alice’)

await asyncio.sleep(1)

print(’Bye’)

async def bob():

print(’Nice to meet you’)

Concurrency vs. Parallelism

• parallelism: multiple tasks being processed at the same time, e.g. on

a multicore machine

• concurrency: tasks can overlap, but don’t necessarily run at the same

time

Concurrency vs. Parallelism

• parallelism: multiple tasks being processed at the same time, e.g. on

a multicore machine

→ CPU intensive computations

• concurrency: tasks can overlap, but don’t necessarily run at the same

time

Concurrency vs. Parallelism

• parallelism: multiple tasks being processed at the same time, e.g. on

a multicore machine

→ CPU intensive computations

→ threads, processes

• concurrency: tasks can overlap, but don’t necessarily run at the same

time

Concurrency vs. Parallelism

• parallelism: multiple tasks being processed at the same time, e.g. on

a multicore machine

→ CPU intensive computations

→ threads, processes

• concurrency: tasks can overlap, but don’t necessarily run at the same

time

Concurrency vs. Parallelism

• parallelism: multiple tasks being processed at the same time, e.g. on

a multicore machine

→ CPU intensive computations

→ threads, processes

• concurrency: tasks can overlap, but don’t necessarily run at the same

time

→ waiting for IO, e.g. networking

Concurrency vs. Parallelism

• parallelism: multiple tasks being processed at the same time, e.g. on

a multicore machine

→ CPU intensive computations

→ threads, processes

• concurrency: tasks can overlap, but don’t necessarily run at the same

time

→ waiting for IO, e.g. networking

→ coroutines :)

Libraries using asyncio

• clients and servers for HTTP, websockets

Libraries using asyncio

• clients and servers for HTTP, websockets

• DB connectors: InfluxDB, MySQL, Postgres, . . .

Libraries using asyncio

• clients and servers for HTTP, websockets

• DB connectors: InfluxDB, MySQL, Postgres, . . .

• message queue connectors: Kafka, ZeroMQ, . . .

Libraries using asyncio

• clients and servers for HTTP, websockets

• DB connectors: InfluxDB, MySQL, Postgres, . . .

• message queue connectors: Kafka, ZeroMQ, . . .

• implementations of networking protocols: DNS, SSH, . . .

Libraries using asyncio

• clients and servers for HTTP, websockets

• DB connectors: InfluxDB, MySQL, Postgres, . . .

• message queue connectors: Kafka, ZeroMQ, . . .

• implementations of networking protocols: DNS, SSH, . . .

• . . . and so much more!

Running coroutines

asyncio.run()

asyncio.run(coro())

await

result = await coro()

asyncio.wait for()

try:

result = await asyncio.wait_for(

coro(),

timeout=1,

)

except asyncio.TimeoutError:

print(’Timeout!’)

asyncio.gather()

results = await asyncio.gather(

coro_1(),

coro_2(),

)

asyncio.wait()

await asyncio.wait([coro_1(), coro_2()])

done, pending = await asyncio.wait(

[coro_1(), coro_2()],

timeout=1,

)

done, pending = await asyncio.wait(

[coro_1(), coro_2()],

return_when=asyncio.FIRST_COMPLETED,

)

asyncio.create task()

task = asyncio.create_task(coro())

...

result = await task

task.cancel()

Synchronization

Lock

sound_lock = asyncio.Lock()

async def play_sound():

async with sound_lock:

... # play sound

Event

bob_is_done = asyncio.Event()

async def alice():

await bob_is_done.wait()

print(’finally’)

async def bob():

await asyncio.sleep(60) # chill

bob_is_done.set()

Semaphore

max_three = asyncio.Semaphore(3)

async def download_large_file():

async with max_three:

... # download large file

Condition

cond = asyncio.Condition()

Queue

queue = asyncio.Queue()

async def compute_squares():

for i in range(1000):

await queue.put(i ** 2)

async def print_squares():

while True:

print(await queue.get())

Hands-on

Which Python version

Python 3.7
(or newer)

virtualenv

$ pyenv install 3.7.3

$ pyenv local 3.7.3

$ python --version

Python 3.7.3

$ python -m venv env

$. env/bin/activate

(env) $ pip install -U pip setuptools

(env) $ pip install jupyter

(env) $ jupyter notebook

Exercises:

https://www.natano.net/data/workshops/pydays2019/

https://www.natano.net/data/workshops/pydays2019/

The End

Quiz

Should you use asyncio for ...

Quiz

Should you use asyncio for ...
a HTTP microservice?

Quiz

Should you use asyncio for ...
a HTTP microservice? yes

Quiz

Should you use asyncio for ...
a HTTP microservice? yes

calculating prime numbers?

Quiz

Should you use asyncio for ...
a HTTP microservice? yes

calculating prime numbers? no

Quiz

Should you use asyncio for ...
a HTTP microservice? yes

calculating prime numbers? no

AI, machine learning?

Quiz

Should you use asyncio for ...
a HTTP microservice? yes

calculating prime numbers? no

AI, machine learning? probably not

Quiz

Should you use asyncio for ...
a HTTP microservice? yes

calculating prime numbers? no

AI, machine learning? probably not

a server for an online multiplayer game?

Quiz

Should you use asyncio for ...
a HTTP microservice? yes

calculating prime numbers? no

AI, machine learning? probably not

a server for an online multiplayer game? yes, absolutely!

Questions

Any questions?

Thanks

Thx!
https://www.natano.net/data/workshops/pydays2019/

https://www.natano.net/data/workshops/pydays2019/

	What is asyncio?
	Coroutines
	Concurrency vs. Parallelism
	Libraries using asyncio
	Running coroutines
	asyncio.run()
	await
	asyncio.wait_for()
	asyncio.gather()
	asyncio.wait()
	asyncio.create_task()

	Synchronization
	Lock
	Event
	Semaphore
	Condition
	Queue

	Hands-on
	Which Python version
	virtualenv

	The End
	Quiz
	Questions
	Thanks

